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In this guide you will learn: 
     1)  How to conceptualize and implement light casting for 2D and 3D objects in OpenGL 
     2)  How to understand and apply GLSL attributes to objects in 2D & 3D space 
     3)  Light attenuation, and symmetric shadowcasting, with OpenGL & GLSL 
 
Computer Graphics has been a long running study in the field of computer science, and the 
origins of this research goes back to the 1960’s and 70’s.  Over these decades of research, 
OpenGL has remained the cornerstone of nearly all on-going computer graphics 
implementation and installation for computer systems world-wide.  Without light casters, any 
programs that you write would just output a black window with no visible content.  This guide 
will be very similar to my previous guide on Interactive Computer Graphics, but more of an 
emphasis on light casters within the OpenGL API in C++ programming.  The intention of this 
knowledge is to vastly improve your understanding of computer graphics shading languages, 
and how to apply higher quality to your OpenGL projects.  The higher quality of illumination you 
achieve means the more realistic your scene will display.  The research of Computer Graphics 
for greater visuals is dependent upon greater clarity.  Forensic science and research are better 
understood when presented with a greater quality of simulated sequences.  This is one vital 
area where computer graphics comes in.  These simulations really need better detail and that 
detail will not display as clearly if we don’t have better illumination in our scenes.  You will need 
to be fairly comfortable mathematically while reading this guide as I will be discussing principles 
of linear algebra, geometry, vector mathematics, and physics, along with ray casting, material 
attributes, emissive objects, and volumetric light.  Like most of my previous guides, this 
document will require at the very least, an intermediate level of programming knowledge; a 
comfortable level of reading over the ins and outs of computer graphics, and how light casting 
works in the virtual world.  With all of this in mind, let’s jump in. 
 
 
A light source that casts light upon objects is called a light caster.  There are three primary types 
of light sources in OpenGL known as point lights, spot lights, and directional lights.  Beyond 
that, we have techniques we can use to create different shading/lighting effects such as light 

mapping, emissive objects (emitting light from objects), specular reflections, diffuse shaders, 
and ambient occlusion/global illumination.  Looking to the above example, point lights are light 
sources at a specific position that scatter light in all directions from said light position.  These 
are typically good to spread out across your scene, almost as if you are wanting to place them 
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into multiple lamps that are in multiple locations of a room.  In most 3D applications we'd like 
to simulate a light source that only illuminates an area close to the light source and not the 
entire scene.  This is why we use point lights.  To understand this on a deeper level, point lights 
function as a single position (light is evenly spread out in all directions) artificial light and we 
can calculate their intensity as the light increases or decreases with a process known as The 
Attenuation Factor.  In computer graphics, this method is how we are able to mimic the 
behavior of point lights.  In the real world, light attenuation follows the Inverse Square Law in 
physics which says, the intensity of an effect such as illumination or gravitational force changes 
in inverse proportion to the square of the distance from the source.  Therefore, in this 
particular instance, the decrease in light intensity equal to the inverse of the square of the 
distance between the light source and the object.   
 
When looking at the Inverse Square Law mathematically, we would state the ratio between the 
light intensity at two different points equals to the square of the inverse ratio of their distance 
from the light source. 
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We know this to be correct because the equation that states the surface area of a sphere is 4 
times Pi times the square of the radius.  If the radius increases by a factor of 2, the surface area 
increases by a factor of 4.    

𝑆 = 4𝜋𝑟' 
This means that the same number of photons are 
distributed across a surface which is 4 times larger 
when the distance from the light source increases 
by a factor of 2.  The Sphere Surface Area 
equation allows us to calculate our light 
attenuation factor, and in the case of a point light 
in 3D graphics with the inverse square law, it is 
represented by a geometric point which means as 
we get closer to the light source, the intensity 
approaches infinity.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
The Attenuation Factor is a fraction with the numerator being 1 and the denominator being the 
sum of several terms.  First, we have a constant attenuation term.  Notice if we set this term to 
be 1 we basically guarantee that the final attenuation factor will be no more than 1, because in 
general, all three terms in this equation are expected to be positive.  In computer graphics, 

most instances you will 
want the constant 
attenuation term to be 
1.  The second 
attenuation term is 
known as the linear 
attenuation because it is 
multiplied by the 
distance.  We can expect 
that as the distance 
increases, this part of 
the denominator 

We can expect the maximum of the attenuation 
factor to be 1, otherwise we will increase the light 
intensity.  Without getting too bogged down with 
the semantics of mathematical terms, we can use a 
more simplified lighting equation where the light 
intensity of the point light is multiplied by an 
attenuation factor that will be calculated using 
distance and a few other parameters that we can 
control. 
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increases on a linear scale.  Lastly, we have the exponential attenuation term which is 
multiplied by the distance which is then raised to the power of 2.  As the distance increases this 
part of the denominator increases exponentially.  The spot light does share similar 
characteristics with the point light.  They both have a position in the 3D world and since they 
are man-made their intensity attenuates as the distance from the object to the light source 
grows.  The unique characteristic of the spot light is that it has a specific direction.  We expect 
that the spot light to affect specific objects depending on the angle of its axis.  Here are a 
couple of screenshots from a C++ 3D program that I wrote with OpenGL to sample light sources, 
and below each image some OpenGL code for each attribute. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

struct LightAttenuation  { 
          float Constant = 1.0f; 
          float Linear = 0.0f; 
          float Exp = 0.0f; 
}; 
 
struct PointLight  { 
          vec3 LocalPos; 
          BaseLight Base; 
          Attenuation Atten; 
}; 
 
class PointLight public BaseLight  { 
          public: Vector3f WorldPos = Vector3f (0.0f, 0.0f, 0.0f); 
          LightAttenuation Attenuation; 
           
          void CalcLocalPos(const WorldTrans& worldTransform); 
          const Vector3f& GetLocalPos () const  {  
           
          return LocalPosition; 
          } 
} 
 

struct SpotLight  { 
          vec3 Direction; 
          PointLight Base; 
          float Cutoff; 
}; 
 
vec4 CalcSpotLight(SpotLight l, vec3 Normal)  { 
          vec3 LightToPixel = normalize(LocalPos0 – 
l.Base.LocalPos); 
          float SpotFactor = dot(LightToPixel, l.Direction); 
           
          if (SpotFactor > l.Cutoff)  { 
               vec4 Color = CalcPointLight(l.Base, Normal); 
               float SpotLightIntensity = (1.0 – (1.0 – 
SpotFactor)/(1.0 – l.Cutoff));  
          return Color * SpotLightIntensity; 
          } 
          else  { 
               return vec4(0,0,0,0); 
          } 
} 
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Per these examples, I created a BaseLight structure 
with the color, ambient, and diffuse intensity.  
Diffuse intensity is also used for specular lighting.  
GLSL doesn’t support inheritance as C++ so in the 
DirectionalLight structure we have the BaseLight 
as a member and an additional vector for the 
direction.  In these code samples we can see the 
attenuation structure with the point light is 
composed of the BaseLight, the attenuation and 
the position in local space.  We have a two-
dimensional array for the PointLight structure and 
the array cannot be dynamic so you will need to 
set the maximum value according to the 
requirements of your engine.  You will often use 
fewer lights than the maximum so we also have an 
integer uniform that you can update with the 
actual number of point light sources.  
CalcLightInternal takes the index of the light 
source and the normal as parameters.  We start by 
calculating the light direction vector by subtracting 
the local position of the current pixel from the 
local position of the light source.  
 
 
 
Next, we calculate the distance from the light 
source to the pixel by calling length() on the 
direction vector.  This is an internal GLSL function 
that is a cleaner approach to calculating 
normalized vectors. 
 

struct DirectionalLight  { 
           BaseLight Base; 
           vec3 Direction; 
}; 
 
uniform DirectionalLight gDirectionalLight;   
uniform int gNumPointLights; 
uniform PointLight gPointLights[MAX_POINT_LIGHTS]; 
uniform Material gMaterial; 
uniform vec3 gCameraLocalPos; 
vec4 CalcLightInternal(BaseLight Light, vec3 LightDirection, vec3 Normal) {  
          vec4 AmbientColor = vec4(Light.Color, 1.0f) * LightAmbientIntensity *  
          vec4(gMaterial.AmbientColor, 1.0f); 
 
          float DiffuseFactor = dot(Normal, -LightDirection); 
           
          vec4 DiffuseColor = vec4(0, 0, 0, 0); 
          vec4 SpecularColor = vec4(0, 0, 0, 0); 
           
          if (DiffuseFactor > 0)  {  
               DiffuseColor = vec4(Light.Color, 1.0f) * Light.DiffuseIntensity *  
               vec4(gMaterial.DiffuseColor, 1.0f) * DiffuseFactor; 
                      vec3 PixelToCamera = normalize(gCameraLocalPos – LocalPos0); 
                      vec3 LightReflect = normalize(reflect(LightDirection, Normal)); 
                      float SpecularFactor = dot(PixelToCamera, LightReflect); 
 if (SpecularFactor > 0)  { 
        float SpecularExponent = texture2D(gSamplerSpecularExponent, TexCoord0).r * 255.0; 
        SpecularFactor = pow(SpecularFactor, SpecularExponent); 
        SpecularColor = vec4(Light.Color, 1.0f) * Light.DiffuseIntensity * vec4(gMaterial.SpecularColor, 1.0f) * 
        SpecularFactor; 
 } 
         } 
 
         return Color / Attenuation; 
} 
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These code samples allow us to see a small glimpse into how we can define and check their 
parameters against the caster’s individual effects.  Now that we’ve seen how light attenuation 
works, what practical purposes does this serve?  From a conceptual level light attenuation is 
very significant in several fields, including optics, telecommunications, forensic science, and 
environmental science.  Understanding how light behaves as it passes through different 
materials is crucial for designing optical systems, analyzing water quality, and assessing the 
transparency of substances.  As such, in computer graphics, light casters play a crucial role in 
simulating realistic lighting and shading effects within a virtual environment.  The importance of 
light casters can be summarized in a few key points: 
 

1. Realism and Aesthetics:  Light casters contribute to creating visually appealing and 
realistic scenes by simulating how light interacts with surfaces. Proper lighting enhances 
the perception of depth, texture, and shape in 3D graphics. 
 

2. Highlighting Features:  Light casters are essential for emphasizing certain features of 
objects. By strategically placing and configuring light sources, artists and developers can 
highlight specific areas, creating focal points and directing the viewer's attention. 
 

3. Materials and Reflections:  Light casters play a role in simulating how light interacts 
with different materials. This includes effects like specular highlights, reflections, and 
refractions, allowing for the realistic representation of surfaces with varying levels of 
glossiness, transparency, and reflectivity. 
 

4. Dynamic Lighting:  Light casters support dynamic lighting scenarios where the position 
and properties of light sources can change dynamically during runtime. This is 
particularly important for interactive applications like video games, where dynamic 
lighting enhances realism and player immersion. 
 

5. Global Illumination:  Advanced rendering techniques, such as global illumination, rely 
on realistic simulation of how light bounces and interacts with surfaces. Light casters 
contribute to the calculation of indirect lighting, enhancing the overall realism of the 
scene. 

 
In summary, light casters in computer graphics are essential for creating visually appealing and 
realistic virtual environments. They contribute to the overall aesthetics, simulate lighting 
effects, and play a key role in shaping the visual experience of 3D graphics for scientific 
research.  The type of shading for forensic investigation varies depending on the specific goals 
of the analysis, the type of data being visualized, and the preferences of forensic experts.  The 
emphasis is often on clarity, precision and the ability to highlight important details for 
investigative purposes.  For this, Flat, Gouraud, and Phong shaders are commonly used in 
forensic research with computer graphics.  So far, we’ve taken a small glimpse into both the 
mathematical and programming perspectives from the basics of how light casting works, but 
we can also take a look at how adding materials, polygonal subdivision, and a few other 
dynamic light sources can really alter how we view lighting effects in the virtual world. 
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Think about the surfaces of objects with different material attributes.  Some may look duller, or 
not have the same depth due to not having a specular reflection.  The way in which light 
bounces off of objects can make all of the difference in compiling/rendering your scene.  Here is 
an example of different lighting techniques with OpenGL: 

 
We see in this example that the torus 
is more diffused, whereas the 
icosahedron has more of an ambient 
look to it.  The teapot is the most 
obvious among the three and stands 
out the most with specular 
reflection.  Specular elements also 
define edges more vividly on our 
objects.  But how do we achieve this?  
The material attributes and 
adjustments of the lighting makes all 
the difference.  Let’s take a deeper 
look at this example by jumping into 
the code. 
 
 
  
 
Beginning on line 23, we define the 
arrays and variables related to the 
lighting and material properties 
through RGBA (Red, Green, Blue, 
Alpha) coordinates of the light.  We 
have three arrays (red_light, 
green_light, and white_light) are 
defined to represent the different 
types of lights in the program.  These 
values are in the range of [0.0, 1.0] 
where 1.0 is the maximum intensity. 
On line 27 we create two arrays for 
the light positions, and then 
beginning on line 30 we begin 
defining all of the material properties 
for diffuse, specular, and shininess 
materials for all three objects.  All of 

these properties are crucial in OpenGL in order to achieve realistic lighting effects in 3D scenes.  
The values chosen for each property influence how light interacts with surfaces, affecting the 
visual appearance of the rendered objects.  But there is still more that we can learn from this 
program. 

Material Attributes in OpenGL 
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This display function allows us to create our objects, and then display them based on the 
parameters that we pass to the function.  For instance, beginning on line 67 we are creating a 

modelview matrix for the objects in 
the scene.  On line 70 the parameters 
that we pass for glScalef scale the 
objects up via the x, y, and z-axis.  The 
glRotatef function applies a rotation 
transformation to the current matrix.  
The format of parameters passed to 
glRotatef are as follows:  
(GLfloat angle, GLfloat x, GLfloat y, 
GLfloatz) so in other words on line 71, 
20.0 is the angle in degrees,  
1.0 is the rotation on the x-axis, 
and 0.0, 0.0 is no rotation on the y, 
and z-axis.  This is why the objects in 
the rendered window above are not 
tilted or rotated in any other manner.  
The glTranslatef function allows us to 
move the location of the individual 
objects around in 3D space to a 
different location.  
Beginning on line 99 we are calling a 
function output with specific 
parameters 80 (X-axis), and 2800 (y-
axis) on screen, and then the format 
string (Torus: %s ) and then the value 
of the variable ‘torus_material’ 
indicating that the torus material is a 
string variable.  So, what does that 
mean?  
 

 
In OpenGL, a torus itself is a geometric primitive, a 3D shape defined by its mathematical 
properties, such as radius, thickness, and the number of segments.  Per the above code, the 
concept of material in OpenGL refers to the visual properties assigned to an object, such as its 
color, shininess, reflection, and other visual characteristics.  With this in mind, let’s consider 
some of the geometric properties of subdivision in geometry.  The number of segments in the 
geometry affects the allotted surfaces and points at which more light sources can bounce from.  
Also, since we’re already on the topic of geometric primitives and specifically, the torus, I will 
demonstrate this with another OpenGL program that I’ve written in C. 
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This is a simple light casting program written in C to demonstrate the lighting and 
transformation commands to render a torus model with a light.  We move this light by a 
modeling transformation.  The light position is reset after the modeling transformation is called.  
The eye position does not change.  When the left-mouse button is pressed, it alters the 
modeling transformation (X rotation) by 30 degrees with every click. 

 
As we can see from these first three images, as the light source makes its way further around 
the torus, the light is going to change based on the angle of the spot light. 

 
The first three screenshots demonstrate the divided segments in our geometry, but what if we 
wanted to subdivide the mesh of the torus in order to make a far smoother surface?  We could 
do this by sampling the density of the mesh creating far more faces within the geometry. 

 
At the point of origin, the 
difference is quite apparent.  
The torus on the left only has 15 
samples, whereas the torus on 
the right has 150.  The density 
and radius of the mesh has been 
significantly increased, so the 
amount of faces creates a much 
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smoother surface.  This change is also due to an alteration in the material that has been applied 
to the torus.  Let’s look at an example of how this is done in the code.  

 
The init function at the top is very 
straight forward.  We clear the color 
buffer by setting all RGBA values to 0. 
This is what we want when changing 
values throughout key input for the 
program while in runtime.  Line 11 
sets the shading model to smooth shading.  In smooth shading, colors are interpolated across 
the surface of polygons, resulting in a smooth transition between different vertex colors.   
 
The remaining lighting is very standard enabling lighting functions, and GL_DEPTH_TEST on line 
14 ensures that objects that are closer to the camera appear in front of objects that are farther 
away.  The depth test compares the depth values of pixels in the framebuffer to determine 
visibility.  In more clear English terms, the init function initializes several OpenGL settings for 
rendering a 3D scene.  It sets the clear color to black, configures smooth shading, enables 
lighting calculations, enables the first light source (GL_LIGHT0), and enables depth testing for 
correct depth ordering of objects.  This function is typically called once during the initialization 
phase of an OpenGL program.   
 
The display function on line 17, has more to do with setting up exactly what is happening in 
your scene, and it obviously has a lot more occurring inside of the function.  Essentially, the 
display function sets up a simple 3D scene with a rotating wireframe cube (without lighting) and 
a solid torus (with lighting).  The scene includes a light source positioned at (0.0, 0.0, 1.5), and 
the viewpoint is set to (0.0, 0.0, 5.0). The variable spin controls the rotation of the coordinate 
system about the x-axis.   
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In my updated version, there is obviously some changes I made to this.  In this init function I 
define more material properties such 
as specular reflection (mat_specular), 
shininess exponent (mat_shininess), 
light position (light_position), and 
diffuse reflection (mat_diffuse).  
Starting on line 22 I set the material 

properties for the front faces of 
polygons, specular reflection, 
shininess, and diffuse reflection are 
specified using the previously defined 
arrays.  My display function here also 
has more than the display function on 
the previous page.  In this display 
function, the big difference is the 
radius and samples of the torus, the 
color, material attributes, lighting, 
and the ability to rotate on the y-axis 
in addition to the x-axis.  These alterations give us the following effects: 
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What a clear difference exploring other lighting and materials can give you, but this is only 
scraping the surface of what can be accomplished with OpenGL lighting effects.   
 
 

 
Phong-Blinn shading is a shading model 
used to simulate the interaction of light 
with surfaces with more efficient 
calculations for specular highlights.  The 
Phong-Blinn shading model provides 
more visually appealing methods to 
simulate the reflection of light on 
surfaces, producing realistic highlights 
and shading effects.  To help us better 
understand the Phong-Blinn model, it 
can be expressed with the following 
equation: 
 
 

𝐼 = 	𝑘0 ∗ 	 𝐼0 +	𝑘% ∗ 	 𝐼% ∗ (𝑁 ∗ 𝐿) +	𝑘5 ∗ 	 𝐼5 ∗ (𝐻 ∗ 𝑉)8 
• 𝐼  is the final intensity of light reaching the viewer 
• 𝑘0 , 𝑘% , and 𝑘5  are the ambient, diffuse, and specular reflection coefficients 
• 𝐼0 , 𝐼% , and 𝐼5 are the intensities of ambient, diffuse, and specular light 
• 𝑁 is the normalized surface normal 
• 𝐿 is the normalized direction from the surface to the light source 
• 𝐻 is the normalized half-angle vector between L and V (the normalized direction from 

the surface to the viewer) 
• 𝑛 is the specular exponent 

 
This calculation translates to GLSL as:  
vec3 lightDir = normalize(lightPos - FragPos);  
vec3 viewDir = normalize(viewPos - FragPos);  
vec3 halfwayDir = normalize(lightDir + viewDir); 
 
This converts the Blinn-Phong specular reflection: 
float specularIntensity = pow(max(dot(N, H), 0.0), shininess); 
vec3 specular = specularColor * specularIntensity; 
 
and finally, Ambient reflection: 
vec3 ambient = ambientColor; 
 

Advanced Lighting Techniques 
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So far, we’ve learned how well point lights serve as a great example for light attenuation, and 
per my example on page 3, we understand this to be especially true from a two-dimensional 
perspective.  This now brings us to the topic of symmetric shadowcasting.  Shadowcasting is a 
common technique for calculating field of view.  With the right implementation, it is fast, 
consistent, and symmetric.  Before we get to the implementation, let’s first contemplate how 
we can go about creating some of these effects.   
 
The following example has a light 
source placed in a 2D environment 
surrounded by different walls that 
create a blockade which results in 
shadowcasting.  When the light 
passes by a blocked surface, we are 
essentially in a blind spot.  The light 
attenuation distance displays how far 
the light can hit and reflect off of 
objects.  In a 2D top-down map it is 
sometimes useful to calculate which 
areas are visible from a given point.  
For example, you might want to hide 
what’s not visible from the player’s 
location, or you might want to know 
what areas would be lit by a torch.    
We can also add a lot more lights to 
illuminate more of the map to better 
illustrate environment lighting.   
 
 
 
As we can see, light casting on a two-dimensional plane involves simulating the effects of light 
sources and their interaction with objects on a flat surface.  This is commonly used in 2D 
graphics or games where a 3D representation is not required.  In my previous guide entitled, 
Interactive Computer Graphics I provided a brief explanation about how to write a vertex 
shader and a fragment shader in GLSL.  In 2D light casting environments such as this, we can 
use them again.  Let's consider a simple scenario with a point light source and objects on a 2D 
plane.  Here's a simplified explanation of how light casting can be implemented in a 2D plane 
using a vertex shader in GLSL:  
 
layout(location = 0) in vec2 inVertexPosition; 
out vec2 fragPosition; 
 
void main() { 
    fragPosition = inVertexPosition;                        Passing the vertex position to the fragment shader          
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    gl_Position = vec4(inVertexPosition, 0.0, 1.0);                    Output transformed vertex position 
} 
 
and the fragment shader: 
 
in vec2 fragPosition; 
out vec4 fragColor; 
 
uniform vec2 lightPosition;                                           
uniform vec3 lightColor; 
uniform float lightRadius; 
 
void main() { 
    float distanceToLight = distance(fragPosition, lightPosition); 
 
    float attenuation = 1.0 / (1.0 + 0.1 * distanceToLight + 0.01 * distanceToLight * distanceToLight); 
     
    vec3 intensity = lightColor * attenuation;                    
    fragColor = vec4(intensity, 1.0); 
} 
 
In your own application, you would 
set the appropriate uniforms 
(lightPosition, lightColor, and 
lightRadius) based on the position, 
color, and radius of your light 
source.  You would then render your 
objects using these basic shaders.   
 
The above vertex and fragment 
shaders are examples of how this 
light casting application is 
implemented, which also 
reproduces shadowcasting effects.  I 
just had to alternate the uniform 
parameters, and account for several 
other functions.  Another area 
distinctive to the following effects in 
these examples are known as 
subtractive algorithms.  Subtractive 
algorithms start with everything 
visible then subtract the hidden 
areas; additive algorithms start with 
nothing visible then add the visible areas.  I’ll describe an additive algorithm that works with 
line segments, not only solid blocks or grids. 

Calculate the distance from the 
fragment to the light Calculate the 

attenuation 
factor based 
on distance 

Calculate the intensity of the light and outputting 
the final color. 
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This example shows how we can manipulate shadowcasting effects using different size blocks 
and the silhouettes created by said objects.   

 
Figure A simply displays a 2D sandbox demo with three different sized blocks that I added into a 
point light scene.  Figure B demonstrates visual depictions of angularity with shadowcasting 
and ray casting passes.  The next question is, how do we keep track of which walls the sweep 
ray passes through?  Only the nearest wall is visible.  How do you figure out which wall is 
nearest?  The simplest thing is to calculate the distance from the center to the wall.  Whenever 
the nearest wall ends, or if a new wall is nearer than the others, we create a triangle showing a 
visible region.  The union of these triangles is the area that is visible from the central point. 
Note: Creating a triangle involves intersecting the previously active wall with the sweep ray.  As 
a result, the new edge of the triangle may be longer or shorter than the sweep ray, and the far 
edge of the triangle may be shorter than the previously active wall.  
 
The next question is, how can we better 
understand the angularity and silhouette edges of 
passing light by objects on a 2D plane?  Let’s 
consider the circumference of a circle.  If we look 
at the circle mathematically it’s very easy to 
represent it in 2D space, all we need is a center 
point and a radius to its border.  First, we find the 
direction perpendicular to the rays of light.  If we 
then travel in that direction (and the inverted) 
from the center point by the radius of the circle 
we’ll find the points that make up the 
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silhouette edge.  The angle of the rays will 
determine the shape of the shadow cast behind 
the circle.  What’s even better is that we can use 
trigonometry to find all points along its 
circumference as long as we know these two 
properties.  It’s this principle that is the starting 
point of the trigonometric algorithm.  As long as 
we ensure that the shapes all have a certain level 
of symmetry to its bounding circle, then we can 
use trigonometry as a starting point and then 
adjust the results based on how close our shape is 
to a circle.  With this information we can define 
the span of our algorithm.  At one end the 
silhouette edge is close to running through the center point, but never quite reaching it.  On the 
other end the light is close enough for a single primitive to represent the silhouette edge. 
 
If we amplify this process, we can create even more vivid effects using light casting in OpenGL & 
GLSL with just one click of the mouse.  This is another example of light casting on a two-
dimensional plane in GLSL except it uses a much more advanced approach with pixel shaders.  

The last question is, why 
create these programs?  What 
can we learn from these 
processes?   
 
Player Vision – The simplest 
operation is to limit the 
player’s vision by intersecting 
the output with the limit of 
visibility.  For example, 
intersect the output of the 
algorithm with a circle to limit 
the radius you can see.  
Intersect with a gradient-filled 
circle to make the light fall off 
with distance.  Intersect with a 
cone to build a “flashlight” 
effect that lets you see farther 

in front of you but not much behind you. 
 
Mapping Objects – Visibility can also be used for calculating what areas a torch lights up.  My 
above example takes the union of the areas lit up by each torch, then intersects that with the 
area the player can see. 
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AI Behaviors – Visibility can also be used to build AI behaviors.  For example, let’s suppose the 
enemy AI wants to throw a grenade to hit one of the players, but also wants to stand in a place 
where the players can’t shoot back.  Grenades need to be close enough to hit the player, and 
also not behind an obstruction. 
 
CAD (Computer Aided Design) – In CAD applications, accurate lighting simulations help 
designers visualize how objects will look in different lighting conditions.  This is crucial for 
architects, engineers, and product designers to assess the aesthetics and functionality of their 
designs. 
 
Architectural Visualization – Architects use light casting to create realistic renderings of 
buildings and interiors.  It allows them to showcase the impact of natural and artificial lighting 
on the spaces they design. 
 
Virtual Reality (VR) and Augmented Reality (AR) – Realistic lighting is essential in VR and AR 
environments to create a sense of presence. Simulating accurate shadows and reflections 
enhances the perception of depth and realism for users. 
 
 
This concludes my guide on light casting in OpenGL and GLSL.  While this guide touched up on 
some fairly in-depth topics with light, my goal was to make this significantly shorter than my 
previous OpenGL guide, and focus more on a single, interconnected topic rather than branching 
out into numerous areas of graphics programming.  There is obviously a vast amount of further 
research and implementation to create light casting effects, but this guide was not intended to 
be that long.  OpenGL can easily be expanded both mathematically, and programming-wise that 
this guide could have grown to 80+ pages in no time.  When I look back to my journey with 
OpenGL and GLSL programming, I can safely say it did not happen over a fortnight.  Computer 
graphics programming is next-level and not easy to produce, but is a fascinating technology if 
you’re willing to work hard to learn it.  I hope this guide was helpful in teaching you more about 
light casting with computer graphics.  Unless otherwise specified, all diagrams, code examples, 
and application-rendered images were created by me.  If you have any questions about this 
guide or any other general inquiries, you can email me at cjordan@wondercreationstudios.com    
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