
LIGHT CASTING IN
OPENGL & GLSL

WITH C++

By Chad Jordan

August 20th, 2011

 1

In this guide you will learn:
 1) How to conceptualize and implement light casting for 2D and 3D objects in OpenGL
 2) How to understand and apply GLSL attributes to objects in 2D & 3D space
 3) Light attenuation, and symmetric shadowcasting, with OpenGL & GLSL

Computer Graphics has been a long running study in the field of computer science, and the
origins of this research goes back to the 1960’s and 70’s. Over these decades of research,
OpenGL has remained the cornerstone of nearly all on-going computer graphics
implementation and installation for computer systems world-wide. Without light casters, any
programs that you write would just output a black window with no visible content. This guide
will be very similar to my previous guide on Interactive Computer Graphics, but more of an
emphasis on light casters within the OpenGL API in C++ programming. The intention of this
knowledge is to vastly improve your understanding of computer graphics shading languages,
and how to apply higher quality to your OpenGL projects. The higher quality of illumination you
achieve means the more realistic your scene will display. The research of Computer Graphics
for greater visuals is dependent upon greater clarity. Forensic science and research are better
understood when presented with a greater quality of simulated sequences. This is one vital
area where computer graphics comes in. These simulations really need better detail and that
detail will not display as clearly if we don’t have better illumination in our scenes. You will need
to be fairly comfortable mathematically while reading this guide as I will be discussing principles
of linear algebra, geometry, vector mathematics, and physics, along with ray casting, material
attributes, emissive objects, and volumetric light. Like most of my previous guides, this
document will require at the very least, an intermediate level of programming knowledge; a
comfortable level of reading over the ins and outs of computer graphics, and how light casting
works in the virtual world. With all of this in mind, let’s jump in.

A light source that casts light upon objects is called a light caster. There are three primary types
of light sources in OpenGL known as point lights, spot lights, and directional lights. Beyond
that, we have techniques we can use to create different shading/lighting effects such as light

mapping, emissive objects (emitting light from objects), specular reflections, diffuse shaders,
and ambient occlusion/global illumination. Looking to the above example, point lights are light
sources at a specific position that scatter light in all directions from said light position. These
are typically good to spread out across your scene, almost as if you are wanting to place them

Introduction

Contemplating Casters

 2

into multiple lamps that are in multiple locations of a room. In most 3D applications we'd like
to simulate a light source that only illuminates an area close to the light source and not the
entire scene. This is why we use point lights. To understand this on a deeper level, point lights
function as a single position (light is evenly spread out in all directions) artificial light and we
can calculate their intensity as the light increases or decreases with a process known as The
Attenuation Factor. In computer graphics, this method is how we are able to mimic the
behavior of point lights. In the real world, light attenuation follows the Inverse Square Law in
physics which says, the intensity of an effect such as illumination or gravitational force changes
in inverse proportion to the square of the distance from the source. Therefore, in this
particular instance, the decrease in light intensity equal to the inverse of the square of the
distance between the light source and the object.

When looking at the Inverse Square Law mathematically, we would state the ratio between the
light intensity at two different points equals to the square of the inverse ratio of their distance
from the light source.

!"
!#

 = (%#
%"
)'

 3

We know this to be correct because the equation that states the surface area of a sphere is 4
times Pi times the square of the radius. If the radius increases by a factor of 2, the surface area
increases by a factor of 4.

𝑆 = 4𝜋𝑟'
This means that the same number of photons are
distributed across a surface which is 4 times larger
when the distance from the light source increases
by a factor of 2. The Sphere Surface Area
equation allows us to calculate our light
attenuation factor, and in the case of a point light
in 3D graphics with the inverse square law, it is
represented by a geometric point which means as
we get closer to the light source, the intensity
approaches infinity.

The Attenuation Factor is a fraction with the numerator being 1 and the denominator being the
sum of several terms. First, we have a constant attenuation term. Notice if we set this term to
be 1 we basically guarantee that the final attenuation factor will be no more than 1, because in
general, all three terms in this equation are expected to be positive. In computer graphics,

most instances you will
want the constant
attenuation term to be
1. The second
attenuation term is
known as the linear
attenuation because it is
multiplied by the
distance. We can expect
that as the distance
increases, this part of
the denominator

We can expect the maximum of the attenuation
factor to be 1, otherwise we will increase the light
intensity. Without getting too bogged down with
the semantics of mathematical terms, we can use a
more simplified lighting equation where the light
intensity of the point light is multiplied by an
attenuation factor that will be calculated using
distance and a few other parameters that we can
control.

!"
!#

 = (%#
%"
)'

 4

increases on a linear scale. Lastly, we have the exponential attenuation term which is
multiplied by the distance which is then raised to the power of 2. As the distance increases this
part of the denominator increases exponentially. The spot light does share similar
characteristics with the point light. They both have a position in the 3D world and since they
are man-made their intensity attenuates as the distance from the object to the light source
grows. The unique characteristic of the spot light is that it has a specific direction. We expect
that the spot light to affect specific objects depending on the angle of its axis. Here are a
couple of screenshots from a C++ 3D program that I wrote with OpenGL to sample light sources,
and below each image some OpenGL code for each attribute.

struct LightAttenuation {
 float Constant = 1.0f;
 float Linear = 0.0f;
 float Exp = 0.0f;
};

struct PointLight {
 vec3 LocalPos;
 BaseLight Base;
 Attenuation Atten;
};

class PointLight public BaseLight {
 public: Vector3f WorldPos = Vector3f (0.0f, 0.0f, 0.0f);
 LightAttenuation Attenuation;

 void CalcLocalPos(const WorldTrans& worldTransform);
 const Vector3f& GetLocalPos () const {

 return LocalPosition;
 }
}

struct SpotLight {
 vec3 Direction;
 PointLight Base;
 float Cutoff;
};

vec4 CalcSpotLight(SpotLight l, vec3 Normal) {
 vec3 LightToPixel = normalize(LocalPos0 –
l.Base.LocalPos);
 float SpotFactor = dot(LightToPixel, l.Direction);

 if (SpotFactor > l.Cutoff) {
 vec4 Color = CalcPointLight(l.Base, Normal);
 float SpotLightIntensity = (1.0 – (1.0 –
SpotFactor)/(1.0 – l.Cutoff));
 return Color * SpotLightIntensity;
 }
 else {
 return vec4(0,0,0,0);
 }
}

 5

Per these examples, I created a BaseLight structure
with the color, ambient, and diffuse intensity.
Diffuse intensity is also used for specular lighting.
GLSL doesn’t support inheritance as C++ so in the
DirectionalLight structure we have the BaseLight
as a member and an additional vector for the
direction. In these code samples we can see the
attenuation structure with the point light is
composed of the BaseLight, the attenuation and
the position in local space. We have a two-
dimensional array for the PointLight structure and
the array cannot be dynamic so you will need to
set the maximum value according to the
requirements of your engine. You will often use
fewer lights than the maximum so we also have an
integer uniform that you can update with the
actual number of point light sources.
CalcLightInternal takes the index of the light
source and the normal as parameters. We start by
calculating the light direction vector by subtracting
the local position of the current pixel from the
local position of the light source.

Next, we calculate the distance from the light
source to the pixel by calling length() on the
direction vector. This is an internal GLSL function
that is a cleaner approach to calculating
normalized vectors.

struct DirectionalLight {
 BaseLight Base;
 vec3 Direction;
};

uniform DirectionalLight gDirectionalLight;
uniform int gNumPointLights;
uniform PointLight gPointLights[MAX_POINT_LIGHTS];
uniform Material gMaterial;
uniform vec3 gCameraLocalPos;
vec4 CalcLightInternal(BaseLight Light, vec3 LightDirection, vec3 Normal) {
 vec4 AmbientColor = vec4(Light.Color, 1.0f) * LightAmbientIntensity *
 vec4(gMaterial.AmbientColor, 1.0f);

 float DiffuseFactor = dot(Normal, -LightDirection);

 vec4 DiffuseColor = vec4(0, 0, 0, 0);
 vec4 SpecularColor = vec4(0, 0, 0, 0);

 if (DiffuseFactor > 0) {
 DiffuseColor = vec4(Light.Color, 1.0f) * Light.DiffuseIntensity *
 vec4(gMaterial.DiffuseColor, 1.0f) * DiffuseFactor;
 vec3 PixelToCamera = normalize(gCameraLocalPos – LocalPos0);
 vec3 LightReflect = normalize(reflect(LightDirection, Normal));
 float SpecularFactor = dot(PixelToCamera, LightReflect);
 if (SpecularFactor > 0) {
 float SpecularExponent = texture2D(gSamplerSpecularExponent, TexCoord0).r * 255.0;
 SpecularFactor = pow(SpecularFactor, SpecularExponent);
 SpecularColor = vec4(Light.Color, 1.0f) * Light.DiffuseIntensity * vec4(gMaterial.SpecularColor, 1.0f) *
 SpecularFactor;
 }
 }

 return Color / Attenuation;
}

 6

These code samples allow us to see a small glimpse into how we can define and check their
parameters against the caster’s individual effects. Now that we’ve seen how light attenuation
works, what practical purposes does this serve? From a conceptual level light attenuation is
very significant in several fields, including optics, telecommunications, forensic science, and
environmental science. Understanding how light behaves as it passes through different
materials is crucial for designing optical systems, analyzing water quality, and assessing the
transparency of substances. As such, in computer graphics, light casters play a crucial role in
simulating realistic lighting and shading effects within a virtual environment. The importance of
light casters can be summarized in a few key points:

1. Realism and Aesthetics: Light casters contribute to creating visually appealing and
realistic scenes by simulating how light interacts with surfaces. Proper lighting enhances
the perception of depth, texture, and shape in 3D graphics.

2. Highlighting Features: Light casters are essential for emphasizing certain features of
objects. By strategically placing and configuring light sources, artists and developers can
highlight specific areas, creating focal points and directing the viewer's attention.

3. Materials and Reflections: Light casters play a role in simulating how light interacts
with different materials. This includes effects like specular highlights, reflections, and
refractions, allowing for the realistic representation of surfaces with varying levels of
glossiness, transparency, and reflectivity.

4. Dynamic Lighting: Light casters support dynamic lighting scenarios where the position
and properties of light sources can change dynamically during runtime. This is
particularly important for interactive applications like video games, where dynamic
lighting enhances realism and player immersion.

5. Global Illumination: Advanced rendering techniques, such as global illumination, rely
on realistic simulation of how light bounces and interacts with surfaces. Light casters
contribute to the calculation of indirect lighting, enhancing the overall realism of the
scene.

In summary, light casters in computer graphics are essential for creating visually appealing and
realistic virtual environments. They contribute to the overall aesthetics, simulate lighting
effects, and play a key role in shaping the visual experience of 3D graphics for scientific
research. The type of shading for forensic investigation varies depending on the specific goals
of the analysis, the type of data being visualized, and the preferences of forensic experts. The
emphasis is often on clarity, precision and the ability to highlight important details for
investigative purposes. For this, Flat, Gouraud, and Phong shaders are commonly used in
forensic research with computer graphics. So far, we’ve taken a small glimpse into both the
mathematical and programming perspectives from the basics of how light casting works, but
we can also take a look at how adding materials, polygonal subdivision, and a few other
dynamic light sources can really alter how we view lighting effects in the virtual world.

 7

Think about the surfaces of objects with different material attributes. Some may look duller, or
not have the same depth due to not having a specular reflection. The way in which light
bounces off of objects can make all of the difference in compiling/rendering your scene. Here is
an example of different lighting techniques with OpenGL:

We see in this example that the torus
is more diffused, whereas the
icosahedron has more of an ambient
look to it. The teapot is the most
obvious among the three and stands
out the most with specular
reflection. Specular elements also
define edges more vividly on our
objects. But how do we achieve this?
The material attributes and
adjustments of the lighting makes all
the difference. Let’s take a deeper
look at this example by jumping into
the code.

Beginning on line 23, we define the
arrays and variables related to the
lighting and material properties
through RGBA (Red, Green, Blue,
Alpha) coordinates of the light. We
have three arrays (red_light,
green_light, and white_light) are
defined to represent the different
types of lights in the program. These
values are in the range of [0.0, 1.0]
where 1.0 is the maximum intensity.
On line 27 we create two arrays for
the light positions, and then
beginning on line 30 we begin
defining all of the material properties
for diffuse, specular, and shininess
materials for all three objects. All of

these properties are crucial in OpenGL in order to achieve realistic lighting effects in 3D scenes.
The values chosen for each property influence how light interacts with surfaces, affecting the
visual appearance of the rendered objects. But there is still more that we can learn from this
program.

Material Attributes in OpenGL

 8

This display function allows us to create our objects, and then display them based on the
parameters that we pass to the function. For instance, beginning on line 67 we are creating a

modelview matrix for the objects in
the scene. On line 70 the parameters
that we pass for glScalef scale the
objects up via the x, y, and z-axis. The
glRotatef function applies a rotation
transformation to the current matrix.
The format of parameters passed to
glRotatef are as follows:
(GLfloat angle, GLfloat x, GLfloat y,
GLfloatz) so in other words on line 71,
20.0 is the angle in degrees,
1.0 is the rotation on the x-axis,
and 0.0, 0.0 is no rotation on the y,
and z-axis. This is why the objects in
the rendered window above are not
tilted or rotated in any other manner.
The glTranslatef function allows us to
move the location of the individual
objects around in 3D space to a
different location.
Beginning on line 99 we are calling a
function output with specific
parameters 80 (X-axis), and 2800 (y-
axis) on screen, and then the format
string (Torus: %s) and then the value
of the variable ‘torus_material’
indicating that the torus material is a
string variable. So, what does that
mean?

In OpenGL, a torus itself is a geometric primitive, a 3D shape defined by its mathematical
properties, such as radius, thickness, and the number of segments. Per the above code, the
concept of material in OpenGL refers to the visual properties assigned to an object, such as its
color, shininess, reflection, and other visual characteristics. With this in mind, let’s consider
some of the geometric properties of subdivision in geometry. The number of segments in the
geometry affects the allotted surfaces and points at which more light sources can bounce from.
Also, since we’re already on the topic of geometric primitives and specifically, the torus, I will
demonstrate this with another OpenGL program that I’ve written in C.

 9

This is a simple light casting program written in C to demonstrate the lighting and
transformation commands to render a torus model with a light. We move this light by a
modeling transformation. The light position is reset after the modeling transformation is called.
The eye position does not change. When the left-mouse button is pressed, it alters the
modeling transformation (X rotation) by 30 degrees with every click.

As we can see from these first three images, as the light source makes its way further around
the torus, the light is going to change based on the angle of the spot light.

The first three screenshots demonstrate the divided segments in our geometry, but what if we
wanted to subdivide the mesh of the torus in order to make a far smoother surface? We could
do this by sampling the density of the mesh creating far more faces within the geometry.

At the point of origin, the
difference is quite apparent.
The torus on the left only has 15
samples, whereas the torus on
the right has 150. The density
and radius of the mesh has been
significantly increased, so the
amount of faces creates a much

 10

smoother surface. This change is also due to an alteration in the material that has been applied
to the torus. Let’s look at an example of how this is done in the code.

The init function at the top is very
straight forward. We clear the color
buffer by setting all RGBA values to 0.
This is what we want when changing
values throughout key input for the
program while in runtime. Line 11
sets the shading model to smooth shading. In smooth shading, colors are interpolated across
the surface of polygons, resulting in a smooth transition between different vertex colors.

The remaining lighting is very standard enabling lighting functions, and GL_DEPTH_TEST on line
14 ensures that objects that are closer to the camera appear in front of objects that are farther
away. The depth test compares the depth values of pixels in the framebuffer to determine
visibility. In more clear English terms, the init function initializes several OpenGL settings for
rendering a 3D scene. It sets the clear color to black, configures smooth shading, enables
lighting calculations, enables the first light source (GL_LIGHT0), and enables depth testing for
correct depth ordering of objects. This function is typically called once during the initialization
phase of an OpenGL program.

The display function on line 17, has more to do with setting up exactly what is happening in
your scene, and it obviously has a lot more occurring inside of the function. Essentially, the
display function sets up a simple 3D scene with a rotating wireframe cube (without lighting) and
a solid torus (with lighting). The scene includes a light source positioned at (0.0, 0.0, 1.5), and
the viewpoint is set to (0.0, 0.0, 5.0). The variable spin controls the rotation of the coordinate
system about the x-axis.

 11

In my updated version, there is obviously some changes I made to this. In this init function I
define more material properties such
as specular reflection (mat_specular),
shininess exponent (mat_shininess),
light position (light_position), and
diffuse reflection (mat_diffuse).
Starting on line 22 I set the material

properties for the front faces of
polygons, specular reflection,
shininess, and diffuse reflection are
specified using the previously defined
arrays. My display function here also
has more than the display function on
the previous page. In this display
function, the big difference is the
radius and samples of the torus, the
color, material attributes, lighting,
and the ability to rotate on the y-axis
in addition to the x-axis. These alterations give us the following effects:

 12

What a clear difference exploring other lighting and materials can give you, but this is only
scraping the surface of what can be accomplished with OpenGL lighting effects.

Phong-Blinn shading is a shading model
used to simulate the interaction of light
with surfaces with more efficient
calculations for specular highlights. The
Phong-Blinn shading model provides
more visually appealing methods to
simulate the reflection of light on
surfaces, producing realistic highlights
and shading effects. To help us better
understand the Phong-Blinn model, it
can be expressed with the following
equation:

𝐼 = 	𝑘0 ∗ 	 𝐼0 +	𝑘% ∗ 	 𝐼% ∗ (𝑁 ∗ 𝐿) +	𝑘5 ∗ 	 𝐼5 ∗ (𝐻 ∗ 𝑉)8
• 𝐼 is the final intensity of light reaching the viewer
• 𝑘0 , 𝑘% , and 𝑘5 are the ambient, diffuse, and specular reflection coefficients
• 𝐼0 , 𝐼% , and 𝐼5 are the intensities of ambient, diffuse, and specular light
• 𝑁 is the normalized surface normal
• 𝐿 is the normalized direction from the surface to the light source
• 𝐻 is the normalized half-angle vector between L and V (the normalized direction from

the surface to the viewer)
• 𝑛 is the specular exponent

This calculation translates to GLSL as:
vec3 lightDir = normalize(lightPos - FragPos);
vec3 viewDir = normalize(viewPos - FragPos);
vec3 halfwayDir = normalize(lightDir + viewDir);

This converts the Blinn-Phong specular reflection:
float specularIntensity = pow(max(dot(N, H), 0.0), shininess);
vec3 specular = specularColor * specularIntensity;

and finally, Ambient reflection:
vec3 ambient = ambientColor;

Advanced Lighting Techniques

 13

So far, we’ve learned how well point lights serve as a great example for light attenuation, and
per my example on page 3, we understand this to be especially true from a two-dimensional
perspective. This now brings us to the topic of symmetric shadowcasting. Shadowcasting is a
common technique for calculating field of view. With the right implementation, it is fast,
consistent, and symmetric. Before we get to the implementation, let’s first contemplate how
we can go about creating some of these effects.

The following example has a light
source placed in a 2D environment
surrounded by different walls that
create a blockade which results in
shadowcasting. When the light
passes by a blocked surface, we are
essentially in a blind spot. The light
attenuation distance displays how far
the light can hit and reflect off of
objects. In a 2D top-down map it is
sometimes useful to calculate which
areas are visible from a given point.
For example, you might want to hide
what’s not visible from the player’s
location, or you might want to know
what areas would be lit by a torch.
We can also add a lot more lights to
illuminate more of the map to better
illustrate environment lighting.

As we can see, light casting on a two-dimensional plane involves simulating the effects of light
sources and their interaction with objects on a flat surface. This is commonly used in 2D
graphics or games where a 3D representation is not required. In my previous guide entitled,
Interactive Computer Graphics I provided a brief explanation about how to write a vertex
shader and a fragment shader in GLSL. In 2D light casting environments such as this, we can
use them again. Let's consider a simple scenario with a point light source and objects on a 2D
plane. Here's a simplified explanation of how light casting can be implemented in a 2D plane
using a vertex shader in GLSL:

layout(location = 0) in vec2 inVertexPosition;
out vec2 fragPosition;

void main() {
 fragPosition = inVertexPosition; Passing the vertex position to the fragment shader

 14

 gl_Position = vec4(inVertexPosition, 0.0, 1.0); Output transformed vertex position
}

and the fragment shader:

in vec2 fragPosition;
out vec4 fragColor;

uniform vec2 lightPosition;
uniform vec3 lightColor;
uniform float lightRadius;

void main() {
 float distanceToLight = distance(fragPosition, lightPosition);

 float attenuation = 1.0 / (1.0 + 0.1 * distanceToLight + 0.01 * distanceToLight * distanceToLight);

 vec3 intensity = lightColor * attenuation;
 fragColor = vec4(intensity, 1.0);
}

In your own application, you would
set the appropriate uniforms
(lightPosition, lightColor, and
lightRadius) based on the position,
color, and radius of your light
source. You would then render your
objects using these basic shaders.

The above vertex and fragment
shaders are examples of how this
light casting application is
implemented, which also
reproduces shadowcasting effects. I
just had to alternate the uniform
parameters, and account for several
other functions. Another area
distinctive to the following effects in
these examples are known as
subtractive algorithms. Subtractive
algorithms start with everything
visible then subtract the hidden
areas; additive algorithms start with
nothing visible then add the visible areas. I’ll describe an additive algorithm that works with
line segments, not only solid blocks or grids.

Calculate the distance from the
fragment to the light Calculate the

attenuation
factor based
on distance

Calculate the intensity of the light and outputting
the final color.

 15

This example shows how we can manipulate shadowcasting effects using different size blocks
and the silhouettes created by said objects.

Figure A simply displays a 2D sandbox demo with three different sized blocks that I added into a
point light scene. Figure B demonstrates visual depictions of angularity with shadowcasting
and ray casting passes. The next question is, how do we keep track of which walls the sweep
ray passes through? Only the nearest wall is visible. How do you figure out which wall is
nearest? The simplest thing is to calculate the distance from the center to the wall. Whenever
the nearest wall ends, or if a new wall is nearer than the others, we create a triangle showing a
visible region. The union of these triangles is the area that is visible from the central point.
Note: Creating a triangle involves intersecting the previously active wall with the sweep ray. As
a result, the new edge of the triangle may be longer or shorter than the sweep ray, and the far
edge of the triangle may be shorter than the previously active wall.

The next question is, how can we better
understand the angularity and silhouette edges of
passing light by objects on a 2D plane? Let’s
consider the circumference of a circle. If we look
at the circle mathematically it’s very easy to
represent it in 2D space, all we need is a center
point and a radius to its border. First, we find the
direction perpendicular to the rays of light. If we
then travel in that direction (and the inverted)
from the center point by the radius of the circle
we’ll find the points that make up the

 16

silhouette edge. The angle of the rays will
determine the shape of the shadow cast behind
the circle. What’s even better is that we can use
trigonometry to find all points along its
circumference as long as we know these two
properties. It’s this principle that is the starting
point of the trigonometric algorithm. As long as
we ensure that the shapes all have a certain level
of symmetry to its bounding circle, then we can
use trigonometry as a starting point and then
adjust the results based on how close our shape is
to a circle. With this information we can define
the span of our algorithm. At one end the
silhouette edge is close to running through the center point, but never quite reaching it. On the
other end the light is close enough for a single primitive to represent the silhouette edge.

If we amplify this process, we can create even more vivid effects using light casting in OpenGL &
GLSL with just one click of the mouse. This is another example of light casting on a two-
dimensional plane in GLSL except it uses a much more advanced approach with pixel shaders.

The last question is, why
create these programs? What
can we learn from these
processes?

Player Vision – The simplest
operation is to limit the
player’s vision by intersecting
the output with the limit of
visibility. For example,
intersect the output of the
algorithm with a circle to limit
the radius you can see.
Intersect with a gradient-filled
circle to make the light fall off
with distance. Intersect with a
cone to build a “flashlight”
effect that lets you see farther

in front of you but not much behind you.

Mapping Objects – Visibility can also be used for calculating what areas a torch lights up. My
above example takes the union of the areas lit up by each torch, then intersects that with the
area the player can see.

 17

AI Behaviors – Visibility can also be used to build AI behaviors. For example, let’s suppose the
enemy AI wants to throw a grenade to hit one of the players, but also wants to stand in a place
where the players can’t shoot back. Grenades need to be close enough to hit the player, and
also not behind an obstruction.

CAD (Computer Aided Design) – In CAD applications, accurate lighting simulations help
designers visualize how objects will look in different lighting conditions. This is crucial for
architects, engineers, and product designers to assess the aesthetics and functionality of their
designs.

Architectural Visualization – Architects use light casting to create realistic renderings of
buildings and interiors. It allows them to showcase the impact of natural and artificial lighting
on the spaces they design.

Virtual Reality (VR) and Augmented Reality (AR) – Realistic lighting is essential in VR and AR
environments to create a sense of presence. Simulating accurate shadows and reflections
enhances the perception of depth and realism for users.

This concludes my guide on light casting in OpenGL and GLSL. While this guide touched up on
some fairly in-depth topics with light, my goal was to make this significantly shorter than my
previous OpenGL guide, and focus more on a single, interconnected topic rather than branching
out into numerous areas of graphics programming. There is obviously a vast amount of further
research and implementation to create light casting effects, but this guide was not intended to
be that long. OpenGL can easily be expanded both mathematically, and programming-wise that
this guide could have grown to 80+ pages in no time. When I look back to my journey with
OpenGL and GLSL programming, I can safely say it did not happen over a fortnight. Computer
graphics programming is next-level and not easy to produce, but is a fascinating technology if
you’re willing to work hard to learn it. I hope this guide was helpful in teaching you more about
light casting with computer graphics. Unless otherwise specified, all diagrams, code examples,
and application-rendered images were created by me. If you have any questions about this
guide or any other general inquiries, you can email me at cjordan@wondercreationstudios.com

Resources Used:
• Engel, Wolfgang. Programming Vertex and Pixel Shaders – 2004
• Lengyel, Eric. Mathematics for 3D Game Programming and Computer Graphics (Second

Edition) – 2003

Conclusion

